Language:
  
[Sign in] [Register]   

EIAab logo

EIAab news detail, please contact eiaab@eiaab.com if you have any questions about online orders and payment.
Loss of exosomal MALAT1 from ox-LDL-treated vascular endothelial cells induces maturation of dendritic cells in atherosclerosis development
Update time:2019-09-26 23:36:00   【 Font: Large  Medium Small

ABSTRACT

Objectives: Maturation of dendritic cells (DCs) contributes to atherosclerosis (AS) development. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA (lncRNA) that is involved in tumorigenesis. This study was designed to explore the role of exosomes from oxidized low-density lipoprotein (oxLDL)-treated vascular endothelial cells (VECs) in regulating DCs maturation in AS, and to elucidate whether MALAT1 was involved in this process.

Methods: Human umbilical VECs (HUVECs) were treated with or without ox-LDL, after which exosomes were isolated and then co-cultured with immature DCs (iDCs). The phenotypic profile and cell endocytosis in DCs were examined to assess the degree of maturation of DCs. The interaction between MALAT1 and NRF2 protein in DCs was evaluated using RNA pull-down assay and RNA immunoprecipitation. A mouse model of AS was eatablished by feeding ApoE knockout (ApoE−/-) mice with a high-fat diet for 12 weeks.

Results: The ox-LDL-HUVECs-Exos exhibited lower MALAT1 expression when compared with HUVECs-Exos. Furthermore, exosomes from ox-LDL-treated MALAT1-overexpressing-HUVECs (ox-LDL-HUVECs-ExosLv-MALAT1) released elevated expression of MALAT1 to iDCs, which interacted with NRF2 and activated NRF2 signaling, and thereby inhibited ROS accumulation and DCs maturation. Further in vivo experiments showed that a decrease in MALAT1 content in mouse VECs-Exos might be associated with mouse AS progression.

Conclusion: Loss of exosomal MALAT1 from ox-LDL-treated VECs induces DCs maturation in atherosclerosis development.

Cited products
Source:Cell Cycle      by Hq Li, X Zhu, J Ma, et al.
Hot Genes
Atf2 ASPRO ACE ALCAM C19orf80 Trap1a KSR2 Gdf5
Top Searches
Ubiquitin-protein ligase Ubiquitin ELISA metalloproteinase Tumor necrosis Asprosin TRAP1A Alpha
Why choose EIAAB
Our products have been quoted by many publications in famous journals such as Cell; Cell Metabolism; Hepatology; Biomaterials.more
Further Information
About us Protein center Bank account Distributors Terms & Conditions Career eiaab.cn

Copyright & copy www.eiaab.com2006-2016 All Rights Reserved    EIAab         Email:eiaab@eiaab.com

Twitter