Language:
  
[Sign in] [Register]   

EIAab logo

EIAab news detail, please contact eiaab@eiaab.com if you have any questions about online orders and payment.
UV increases skin-derived 1α,25-dihydroxyvitamin D3 production, leading to MMP-1 expression by altering the balance of vitamin D and cholesterol synth
Update time:2019-09-28 20:05:00   【 Font: Large  Medium Small

Abstract

The skin is a unique site in the human body that has the capacity to synthesize the active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), from 7-dehydrocholesterol (7DHC) upon UV irradiation. Keratinocytes express both 25-hydroxylase (CYP27A1 and CYP2R1) and 1α-hydroxylase (CYP27B1), critical enzymes involved in active vitamin D synthesis. Here, we investigated the effect of skin-derived 1α,25(OH)2D3, synthesized purely within the keratinocytes, on MMP-1 expression. Treatment of human epidermal keratinocytes with 1α,25(OH)2D3, but not 7DHC or 25OHD3, significantly increased MMP-1 expression. UV irradiation increases 1α,25(OH)2D3 levels, and ketoconazole inhibits UV-induced production of 1α,25(OH)2D3. Upregulation of MMP-1 by UV was reversed by inhibition of 1α,25(OH)2D3 synthesis using ketoconazole or CYP27B1 siRNA. In keratinocytes, 7DHC is a substrate for both cholesterol and 1α,25(OH)2D3 synthesis. We demonstrated that UV irradiation leads to decreased expression of DHCR7 (7-dehydrocholesterol reductase), the enzyme that converts 7DHC to cholesterol. Inhibition of DHCR7 with its inhibitor BM15766 decreased cholesterol synthesis and increased UV-induced MMP-1 expression, which was attenuated by ketoconazole. These findings suggest that UV-induced reduction of DHCR7 leads to a decrease in cholesterol synthesis, thereby increasing 7DHC availability for 1α,25(OH)2D3 production, which enhances MMP-1 expression. Finally, UV irradiation in human skin in vivo significantly increased CYP27B1 mRNA and decreased DHCR7 mRNA expression. Taken together, we demonstrate here that skin-derived 1α,25(OH)2D3 significantly increases MMP-1 expression in human keratinocytes, a previously unappreciated function of 1α,25(OH)2D3. Moreover, UV irradiation upregulates the enzyme CYP27B1, which leads to 1α,25(OH)2D3 synthesis, but downregulates the cholesterol-producing enzyme DHCR7, both of which collectively lead to increased MMP-1 expression in human keratinocytes. This pathway may be exploited to develop a novel cutaneous anti-aging agent that blocks local cutaneous 1α,25(OH)2D3 synthesis.

Cited products
Source:The Journal of Steroid Biochemistry and Molecular Biology      by M H Shin, Y Lee, M-K Kima, et al.
Hot Genes
Atf2 ASPRO ACE ALCAM C19orf80 Trap1a KSR2 Gdf5
Top Searches
Ubiquitin-protein ligase Ubiquitin ELISA metalloproteinase Tumor necrosis Asprosin TRAP1A Alpha
Why choose EIAAB
Our products have been quoted by many publications in famous journals such as Cell; Cell Metabolism; Hepatology; Biomaterials.more
Further Information
About us Protein center Bank account Distributors Terms & Conditions Career eiaab.cn

Copyright & copy www.eiaab.com2006-2016 All Rights Reserved    EIAab         Email:eiaab@eiaab.com

Twitter