Language:
  
[Sign in] [Register]   

EIAab logo

EIAab news detail, please contact eiaab@eiaab.com if you have any questions about online orders and payment.
A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice
Update time:2012-02-29 09:40:19   【 Font: Large  Medium Small

Large amounts of nanomaterials may reach both the natural and occupational environments. This represents a potential health hazard. People have forecasted that CNTs may lead to the toxicity such as mesothelioma and fibrosis like asbestos. To identify dominant immune responses induced by SWCNTs, we investigated the composition of bronchioalveolar lavage (BAL) cells, the secretion of cytokine and collagen, histopathology, protein expression, and cell phenotypes over time after a single administration of single-walled carbon nanotubes (SWCNT). In our results, the number of total cells and macrophages remained at the up-regulated level until Day 28, neutrophils rapidly increased at Day 1, and lymphocytes increased from Day 7. In the BAL fluid, proinflammatory cytokines rapidly increased at Day 1 and remained at an up-regulated level throughout the experimental period. IL-12 and IL-10 rapidly increased at Day 1 after administration and remained at a similar level until Day 28. IFN-c and IL-4 reached the maximum at Day 1, and IL-5, TGF-b, and collagen reached the maximum at Day 7. IL-13 and IL-17 increased in a time-dependent manner. The distribution of B cells and cytotoxic T cells markedly increased at Days 7 and 14, and fibrotic lesions were histopathologically observed at Days 7 and 14. The expressions of caspase-3, p53, COL1A1, COX-2, iNOS, MMP-9, and MMP-2 were also markedly increased at Days 7 and 14. In addition, the expression of mesothelin, iNOS, MMP-9, and p53 was up-regulated until Day 28. Based on these findings, we suggest that a single intratracheal instillation of SWCNTs may induce early lung fibrosis and subchronic tissue damage. 

Cited products
Source:Arch Toxicol      by Eun-Jung Park ,Jinkyu Roh ,Soo-Nam Kim ,Min-sung Kang ,Young-Ah Han ,Younghun Kim ,Jin Tae Hong ,Kyunghee Choi
Hot Genes
ALCAM ACE KSR2 ASPRO C19orf80 Gdf5 Trap1a Atf2
Top Searches
Asprosin Ubiquitin ELISA Ubiquitin-protein ligase TRAP1A metalloproteinase Tumor necrosis vitamin d
Why choose EIAAB
Our products have been quoted by many publications in famous journals such as Cell; Cell Metabolism; Hepatology; Biomaterials.more
Further Information
About us Protein center Bank account Distributors Terms & Conditions Career eiaab.cn

Copyright & copy www.eiaab.com2006-2016 All Rights Reserved    EIAab         Email:eiaab@eiaab.com

Twitter