Language:
  
[Sign in] [Register]   

EIAab logo

Index > paper Center > paper list.
Enter your KeyWord (Ex. ELISA Kit, Cuticular Active Peptide Factor, etc)
search
Search content in EIAab's paper.

Abstract

Current anticonvulsant therapies are principally aimed at suppressing neuronal hyperexcitability to prevent or control the incidence of seizures. However, the role of oxidative stress processes in seizures led to the proposition that antioxidant compounds may be considered as promising candidates for limiting the progression of epilepsy. Accordingly, the aim of this study is to determine if coenzyme Q10 (CoQ10) and alpha-tocopherol (alpha-Toc) have a neuroprotective effect in rats against the observed oxidative stress and inflammation during seizures induced by pentylenetetrazole (PTZ) in rats, and to study their interactions with the conventional antiseizure drug phenytoin (PHT), either alone or in combination. Overall, the data revealed that alpha-Toc and CoQ10 supplementation can ameliorate PTZ-induced seizures and recommended that nuclear factor erythroid 2–related factor 2 (NRF2) and silencing information regulator 1 (Sirt1) signaling pathways may exemplify strategic molecular targets for seizure therapies. The results of the present study provide novel mechanistic insights regarding the protective effects of antioxidants and suggest an efficient therapeutic strategy to attenuate seizures. Additionally, concurrent supplementation of CoQ10 and alpha-Toc may be more effective than either antioxidant alone in decreasing inflammation and oxidative stress in both cortical and hippocampal tissues. Also, CoQ10 and alpha-Toc effectively reverse the PHT-mediated alterations in the brain antioxidant status when compared to PHT only.

Graphical abstract

A schematic illustration of the role of phenytoin (PHT) and/or antioxidants supplementation like alpha-tocopherol (alpha-Toc) and coenzyme Q10 (CoQ10) in status (SE) epilepticus induced by pentylenetetrazole (PTZ).


Abstract

Aldrin, dieldrin, and DDT are chlorinated insecticides that are unintentionally widespread in the environment. It was previously shown that all of the aforementioned compounds increased secretion of ovarian oxytocin (OT), which is a potent uterotonic agent. However, only DDT and its metabolite (DDE) promoted, while aldrin and dieldrin inhibited basal and OT-stimulated myometrial contractions in cows. Therefore, the aim of this study was to determine the effect of these treatments on the reception and further transmission of the OT-signal for myometrial contractions and on the levels of contractile-associated integral proteins (caveolin; CAV) and gap junction proteins (GAPs). Moreover, their effect on reception of signal for the relaxation of myometrium was also studied. Myometrial strips or cells from non-pregnant (8–12 days of oestrous cycle) or late pregnant (5–8 months) cows were incubated with the studied compounds at environmentally relevant dose (10?ng/ml), which was chosen according to the previous studies. DDT and DDE increased the CAV protein level, while dieldrin decreased the GAPs level. None of the studied compounds affected mRNA expression of the OT receptor and expression of the second messengers (DAG, IP3, PKC, MLCK). Oppositely, DDE and dieldrin decreased mRNA expression of the relaxin (RLX) receptor. Changes in the amount of contractile-associated integral proteins may be involved in the molecular mechanism underlying the adverse effects of the studied insecticides on myometrial motility. Admittedly, none of the studied compounds impaired the reception or further intracellular transmission of the OT signal to promote contractions during the oestrous cycle, while they showed potential to impair the transmission the signal between cells as well as to diminish the effects of one of the primary inhibitor (RLX) of myometrial contractions during gestation.

Abstract

Use of huge amounts of antibiotics in farm animal production has promoted the prevalence of antibiotic-resistant bacteria, which poses a serious threat to public health. Therefore, alternative approaches are needed to reduce or replace antibiotic usage in the food animal industry. PR-39 is a pig-derived proline-rich antimicrobial peptide that has a broad spectrum of antibacterial activity and a low propensity for development of resistance by microorganisms. To test whether ubiquitous expression of PR-39 in transgenic (TG) mice can increase resistance against bacterial infection, we generated TG mice that ubiquitously express a pig-derived antimicrobial peptide PR-39 and analyzed their growth and resistance to infection of the highly pathogenic Actinobacillus pleuropneumoniae (APP) isolated from swine. The growth performance was significantly increased in TG mice compared with their wild-type (WT) littermates. After the APP challenge, TG mice exhibited a significantly higher survival rate and significantly lower tissue bacterial load than WT littermates. Furthermore, the tissue lesion severity that resulted from APP infection was milder in TG mice than that in their WT littermates. This study provides a good foundation for the development of PR-39-expressing TG animals, which could reduce the use of antibiotics in the farm animal industry.

Keywords

Antimicrobial peptides PR-39 Transgenic animals Actinobacillus pleuropneumoniae infection Growth

Abstract

Background

Angiopoietin-like protein 8(ANGPTL8) and apolipoprotein CIII (apoCIII) were found to inhibit the activity of lipoprotein lipase (LPL) and disrupt the clearance of triglyceride-rich lipoproteins (TRLs), leading to hypertriglyceridemia. Whether any relationship exists between these two important modulators of triglyceride metabolism has not been reported. Besides, whether ANGPTL8 concentration is altered in the patients with coronary artery disease (CAD) is still unclear.

Methods

A hospital-based case-control study was conducted. Sixty-eight CAD subjects and fifty-two nonCAD controls were recruited. Plasma apoCIII, ANGPTL8 was measured.

Results

ANGPTL8 and apoCIII concentration exhibited no significant difference between CAD group and nonCAD group. Both ANGPTL8 and apoCIII were significantly correlated with triglyceride level(r = − 0.243, P = 0.008; r = 0.335, P < 0.001, respectively). Regression analysis revealed that apoCIII was an independent contributor to triglyceride level independent of ANGPTL8 concentration (standardized beta= 0.230, P < 0.01).

Conclusion

ApoCIII may mediate the effects of ANGPTL8 on triglyceride metabolism.

Keywords

ANGPTL8 apoCIII Triglyceride Coronary artery disease

Abstract

Ischemia-reperfusion (I/R) injury is a pathological process which magnifies with the ensuing inflammatory response and endures with the increase of oxidants especially during reperfusion. The present study was conducted to assess the possible modulatory effects of plumbagin, the active constituent extracted from the roots of traditional medicinal plant Plumbago zeylanica L., on the dire role of high mobility group box 1 (HMGB1) as well as the associated inflammation, oxidative stress and apoptotic cell death following hepatic I/R. Four groups of rats were included: sham-operated, sham-operated treated with plumbagin, I/R (30?min ischemia and 1?h reperfusion) and I/R treated with plumbagin. Pretreatment with plumbagin markedly improved hepatic function and structural integrity compared to the I/R group, as manifested by depressed plasma transaminases and lactate dehydrogenase (LDH) activities as well as alleviated tissue pathological lesions. Plumbagin prominently hampered HMGB1 expression and subsequently quelled inflammatory cascades, as nuclear factor kB (NF-kB), tumor necrosis factor-alpha (TNF-alpha) and myeloperoxidase (MPO) activity. It also interrupted reactive oxygen species (ROS)-HMGB1loop as evident by restored liver reduced glutathione (GSH), elevated glutathione peroxidase (GPx) activity, along with decreased liver lipid peroxidation. Simultaneously, plumbagin significantly ameliorated apoptosis by amending the mRNA expressions of both anti-apoptotic (Bcl-2) and pro-apoptotic (Bax). The present results revealed that plumbagin is endowed with hepatoprotective activity ascribed to its antioxidant, anti-inflammatory and anti-apoptotic properties which are partially mediated through dampening of HMGB1 expression.

Page 3 of 186
Hot paper
Hot Genes
ALCAM ACE KSR2 ASPRO C19orf80 Gdf5 Trap1a Atf2
Top Searches
Ubiquitin ELISA Ubiquitin-protein ligase metalloproteinase Asprosin Tumor necrosis TRAP1A vitamin d
Why choose EIAAB
Our products have been quoted by many publications in famous journals such as Cell; Cell Metabolism; Hepatology; Biomaterials.more
Further Information
About us Protein center Bank account Distributors Terms & Conditions Career eiaab.cn

Copyright & copy www.eiaab.com2006-2016 All Rights Reserved    EIAab         Email:eiaab@eiaab.com

Twitter