Language:
  
[Sign in] [Register]   

EIAab logo

EIAab news detail, please contact eiaab@eiaab.com if you have any questions about online orders and payment.
Multiple approaches to assess the effects of F-53B, a Chinese PFOS alternative, on thyroid endocrine disruption at environmentally relevant concentrations
Update time:2018-10-24 10:48:00   【 Font: Large  Medium Small

Abstract

A Chinese perfluorooctane sulfonate (PFOS) substitute frequently detected in the environment, 6:2 chlorinated polyfluorinated ether sulfonate (F-53B), has a similar structure to PFOS and it is proposed to cause thyroid dysfunction. To further confirm this hypothesis, the effects of F-53B on the thyroid endocrine system and underlying mechanisms were investigated in vitro and in vivo using rat pituitary GH3 cells and developing zebrafish, respectively. In GH3 cells, F-53B enhanced cell proliferation in a dose-dependent manner, indicative of thyroid receptor agonistic activity. In zebrafish larvae, F-53B exposure induced significant developmental inhibition and increased thyroxine (T4) but not 3,5,3′-triiodothyronine (T3) levels accompanied by a decrease in thyroglobulin (TG) protein and transcript levels of most genes involved in the hypothalamic-pituitary-thyroid (HPT) axis. Interestingly, T4 levels remained significantly increased while TG protein and gene transcription levels were markedly upregulated after depuration. Molecular docking studies revealed that F-53B binds to transthyretin (TTR) by forming hydrogen bonds with Lys123 and Lys115, thereby interfering with thyroid hormone homeostasis. Our collective in vitro, in vivo and in silico studies provide novel evidence that F-53B disrupts the thyroid endocrine system at environmentally relevant concentrations, which cannot be recovered after depuration. Given the persistence of F-53B in the environment, the long-term consequences of thyroid hormone disruption by this chemical warrant further investigation.


Cited products
Source:Science of The Total Environment      by M Deng, YM Wu, C Xu, et al.
Hot Genes
Atf2 ASPRO ACE ALCAM C19orf80 Trap1a Gdf5
Top Searches
Ubiquitin-protein ligase metalloproteinase Ubiquitin ELISA Tumor necrosis Alpha Asprosin TRAP1A
Why choose EIAAB
Our products have been quoted by many publications in famous journals such as Cell; Cell Metabolism; Hepatology; Biomaterials.more
Further Information
About us Protein center Bank account Distributors Terms & Conditions Career eiaab.com.cn

Copyright & copy www.eiaab.com2006-2016 All Rights Reserved    EIAab         Email:eiaab@eiaab.com

鄂ICP备10015095号-1

鄂公网安备 42018502005535号

Twitter